Energy dissipation and violation of the fluctuation-response relation in nonequilibrium Langevin systems.

نویسندگان

  • Takahiro Harada
  • Shin-ichi Sasa
چکیده

The fluctuation-response relation is a fundamental relation that is applicable to systems near equilibrium. On the other hand, when a system is driven far from equilibrium, this relation is violated in general because the detailed-balance condition is not satisfied in nonequilibrium systems. Even in this case, it has been found that for a class of Langevin equations, there exists an equality between the extent of violation of the fluctuation-response relation in the nonequilibrium steady state and the rate of energy dissipation from the system into the environment [T. Harada and S.-i. Sasa, Phys. Rev. Lett. 95, 130602 (2005)]. Since this equality involves only experimentally measurable quantities, it serves as a proposition to determine experimentally whether the system can be described by a Langevin equation. Furthermore, the contribution of each degree of freedom to the rate of energy dissipation can be determined based on this equality. In this paper, we present a comprehensive description on this equality, and provide a detailed derivation for various types of models including many-body systems, Brownian motor models, time-dependent systems, and systems with multiple heat reservoirs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equality connecting energy dissipation with a violation of the fluctuation-response relation.

In systems driven away from equilibrium, the velocity correlation function and the linear-response function to a small perturbation force do not satisfy the fluctuation-response relation (FRR) due to the lack of detailed balance in contrast to equilibrium systems. In this Letter, an equality between an extent of the FRR violation and the rate of energy dissipation is proved for Langevin systems...

متن کامل

Energy Dissipation and Fluctuation-Response in Driven Quantum Langevin Dynamics

Energy dissipation in a nonequilibrium steady state is studied in driven quantum Langevin systems. We study energy dissipation flow to thermal environment, and obtain a general formula for the average rate of energy dissipation using an autocorrelation function for the system variable. This leads to a general expression of the equality that connects the violation of the fluctuation-response rel...

متن کامل

Energy Dissipation and Fluctuation-Response in Driven Quantum Langevin Dynamics: A Generating Function Approach

Energy dissipation in a nonequilibrium steady state is studied in driven quantum Langevin systems. We analyze a characteristic function that generates energy dissipation flow to thermal environment. This function gives a general formula for the average rate of energy dissipation using an autocorrelation function for the system variable. This leads to a general expression of the equality that co...

متن کامل

Fluctuation relation for heat.

We present a fluctuation relation for heat dissipation in a nonequilibrium system. A nonequilibrium work is known to obey the fluctuation theorem in any time interval t. Heat, which differs from work by an energy change, is shown to satisfy a modified fluctuation relation. Modification is brought about by the correlation between heat and energy change during nonequilibrium processes whose effec...

متن کامل

Full-order fluctuation-dissipation relation for a class of nonequilibrium steady states.

Acceleration of relaxation toward a fixed stationary distribution via violation of detailed balance was reported in the context of a Markov chain Monte Carlo method recently. Inspired by this result, systematic methods to violate detailed balance in Langevin dynamics were formulated by using exponential and rotational nonconservative forces. In the present paper, we accentuate that such specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006